Ir al contenido principal

2.2 Operaciones con vectores



Las operaciones fundamentales con vectores son:

    Producto de un vector por un número:

Al multiplicar un vector por un número (un escalar) el vector resultante tiene la misma dirección, sentido y origen que el original, y su módulo es el módulo del vector original multiplicado por el número.

     Suma y resta de vectores:

Para sumar o restar vectores con coordenadas respecto a una determinada base, simplemente se opera con dichas coordenadas:

 \begin{equation} \overrightarrow{u} (x_1,y_1,z_1) \hspace{2cm} \overrightarrow{v} (x_2,y_2,z_2)  \end{equation}

\begin{equation} \overrightarrow{u} +  \overrightarrow{v}= (x_1+x_2,\hspace{0.5cm} y_1+y_2, \hspace{0.5cm} z_1+z_2)  \end{equation}

      Ángulo de dos vectores (𝛼):

\begin{equation} \cos \alpha = \frac{\overrightarrow{u}\cdot \overrightarrow{v}}{\left | \overrightarrow{ u} \right  |  \left | \overrightarrow{ v } \right  | }    = \frac{ x_1   \cdot  x_2 + y_1 \cdot  y_2+ z_1 \cdot  z_2}{\sqrt{x_1^2+y_1^2+z_1^2}\cdot \sqrt{x_2^2+y_2^2+z_2^2}} \end{equation}

        Proyección de un vector sobre otro:
        
 \begin{equation} \overrightarrow{ u} \hspace{0.3cm} sobre  \hspace{0.3cm} \overrightarrow{ v} \rightarrow Vector  \hspace{0.3cm} proyección = \frac{\overrightarrow{u}\cdot \overrightarrow{v}}{\left | \overrightarrow{ v} \right  |^2} \overrightarrow{v} = \frac{x_1   \cdot  x_2 + y_1 \cdot  y_2+ z_1 \cdot  z_2}{x_2^2+y_2^2+z_2^2}(x_2,y_2,z_2) \end{equation}

        Producto escalar de vectores:

El producto escalar de dos vectores, se denomina así porque resulta en un número, o escalar, que es igual al producto de los módulos de ambos vectores por el coseno del ángulo que forman.

Respecto de unas coordenadas, tenemos:

 \begin{equation} \overrightarrow{u} (x_1,y_1,z_1) \hspace{2cm} \overrightarrow{v} (x_2,y_2,z_2)  \end{equation}

\begin{equation} \overrightarrow{u} \cdot  \overrightarrow{v}= x_1   \cdot  x_2 + y_1 \cdot  y_2+ z_1 \cdot  z_2  \end{equation}

        Producto vectorial:

El producto vectorial entre dos vectores se llama así porque tiene como resultado un vector. \begin{equation} \overrightarrow{w}=\overrightarrow{u} \times \overrightarrow{v}=\left|\begin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2} \end{array}\right|=\left|\begin{array}{cc} y_{1} & z_{1} \\ y_{2} & z_{2} \end{array}\right| \overrightarrow{i}-\left| \begin{array}{cc} x_{1} & z_{1} \\ x_{2} & z_{2} \end{array}\right| \overrightarrow{j}+\left|\begin{array}{cc} x_{1} & y_{1} \\ x_{2} & y_{2} \end{array}\right| \overrightarrow{k}  \end{equation}

          Producto mixto de tres vectores

Teniendo

 \begin{equation} \overrightarrow{u} (x_1,y_1,z_1) \hspace{2cm} \overrightarrow{v} (x_2,y_2,z_2) \hspace{2cm} \overrightarrow{w} (x_3,y_3,z_3)  \end{equation}

El producto mixto de los tres vectores es el número que se obtiene por:

 \begin{equation}  \begin{split} & \left [   \overrightarrow{u},\overrightarrow{v},\overrightarrow{w}    \right ] = \overrightarrow{u}\cdot (\overrightarrow{v} \times \overrightarrow{w}) = \\ &  =(x_1,y_1,z_1) \cdot \left ( \begin{vmatrix} y_2 & z_2 \\ y_3 & z_3  \end{vmatrix}, \begin{vmatrix} z_2 & x_2 \\ z_3 & x_3  \end{vmatrix}, \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3  \end{vmatrix}\right )  = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3   \end{vmatrix} \end{split} \end{equation}


Entradas populares de este blog

Radiaciones electromagnéticas, ¿son peligrosas?

En los últimos tiempos, la tecnología ha avanzado a pasos agigantados, hasta llegar a conectar multitud de dispositivos a la red. Estamos en la era de la información, y esa información tiene que transmitirse entre los dispositivos.  Aunque el método más rápido y fiable es emplear siempre algún tipo de conexión por cable, la necesidad de movilidad de ciertos aparatos electrónicos hace que sea necesaria una conexión de datos inalámbrica. En otras ocasiones, aunque la naturaleza de la aplicación permita establecer una conexión cableada entre transmisión y recepción, es más praćtico y económico transmitir la información de forma inalámbrica (es el caso de la TDT, Televisión Digital Terrestre).  Aunque los mecanismos de codificación de la información transmitida de manera inalámbrica son muy variados, todas estas comunicaciones tienen algo en común: se realizan mediante ondas electromagnéticas. Simplificando el tema al máximo, una onda electromagnética utilizada para enviar informa...

1.5. Método de Gauss-Jordan. Rango de una matriz.

El rango de una matriz es el número de filas, o columnas, linealmente independientes que tiene una matriz.  Para determinar el rango de una matriz, se puede aplicar el método de eliminación de Gauss-Jordan, una forma de resolver sistemas de ecuaciones lineales. Si tenemos:   \begin{equation} \left \{ \begin{matrix} x+y+z=0 \\ x+2y-z=1\\2x+y-2z=-2 \end{matrix} \right. \end{equation}   Podemos construir la matriz:  \begin{equation} \left( \begin{array}{ccc|c} 1 & 1 & 1 & 0 \\ 1 & 2 & -1 & 1 \\ 2 & 1 & -2 & -2 \end{array} \right)  \end{equation}  Para resolver el sistema, hay que llegar a la matriz escalonada (cada elemento debajo de su diagonal principal es 0). Primero se busca cambiar la segunda y la tercera fila por combinaciones lineales de las filas de la matriz (suma del producto de cada fila por un número) de tal forma que en la primera columna nos quede un 0. También es posible intercambiar 2 filas com...

¿Por qué las aves se pueden posar en los cables de alta tensión?

Existen cada vez más líneas de alta tensión en la red eléctrica, y muchos animales las toman ya como elementos naturales del paisaje. Es el caso de las aves, que con mucha frecuencia pueden verse descansando sobre estas líneas. Pero, ¿por qué no es peligroso para ellas posarse en elementos con tan alta tensión? Se puede pensar entonces que es posible que las líneas de alta tensión no son tan peligrosas, pero nada más lejos de la realidad. Estas líneas fríen cada año a millones de aves en todo el mundo. La diferencia está fundamentalmente en el tamaño de las aves.  Las víctimas más comunes de estos accidentes son las aves rapaces. Para ellas las líneas no son tan seguras, porque debido a su gran tamaño, pueden llegar a tocar dos cables al mismo tiempo, con consecuencias fatales. Para entender este fenómeno es muy útil relacionar el tendido eléctrico con ríos. Se puede entender entonces cada cable como un río, y la corriente de cada cable como el caudal del río. La tensión es el pote...